
CSC/SD-85/60l4

USER'S GUIDE AND PROGRAM DOCUMENTATION FOR CLASSY

(ADAPTIVE MAXIMUM-LIKELIHOOD CLUSTERING PROGRAM)

Prepared for

GODDARD SPACE FLIGHT CENTER

By

COMPUTER SCIENCES CORPORATION

Under

Contract NAS 5-27888
Task Assignment 80300

I

Prepared by: Approved by:

~w .W,-.,J 3/2.7/~5"
J. Wood Date
Technical Supervisor

~- -- 3;97ftS-
G. Mahler 'Date
Functional Area Manager

~-

(

ABSTRACT

The Massively Parallel Processor (MPP) implementation of the
CLASSY algorithm for adaptive maximum-likelihood clustering
is described. The purpose, method, and capabilities of the
program are outlined; instructions for using the program,
including user parameters, file structures, and other exter-
nal interfaces are given; and details of program structure,
including descriptions of the individual program modules and
specifications for internal data structures, are presented.
The mathematical formulas used by the program are also dis-
cussed, with emphasis on modifications to take advantage of
the MPP environment.

ii

9886

(TABLE OF CONTENTS

Section 1 - Introduction

1.1
1.2
1.3

Purpose .•..•••...•.••
Processing Procedure Overview •..••••
Restrictions •••••••••••.••.

• • 1-1

• • 1-1
· . 1-1

. 1-2
Section 2 - User's Guide • • 2-1
2.1 Processing Parameters • • •• 2-1

2.1.1
2.1.2
2.1.3
2.1.4

Mandatory Parameters ••••••••• 2-1
Output Options ••••.••••••••• 2-2
Statistics-Refinement Parameters • 2-2
Decision Parameters •••••••••• 2-3

.....2.2
2.3
2.4

Input Image Files ••••.•••
Output Pseudoimage File ••••
Statistics Files ••••••••.

• • 2-4
• • 2-5

• 2-5

Decision Log •••2.5

2.4.1
2.4.2

Cluster Means and Probabilities •••
Covariance Data ••••

..
• •• 2-5

• • 2-6

• • 2-6

2.5.1
2.5.2
2.5.3

Decision Log Header •••••••• 2-7
Cluster Status Report .•••••••••• 2-7
Cluster Creation and Deletion Reports ••• 2-9

2.6 Error Conditions •••••• • • 2-9

2.6.1
2.6.2
2.6.3

Parameter Errors •••
MPP Exceptions and Errors.
Image File I/O Errors •••••

•••• 2-10
• • • • • • 2 -10
• • • • • • 2-11

Section 3 - Program Structure •.

Timing Estimates ••2.7

3.1 CLASSY Modules ••••

· •• 2-11

3-1

· .. 3-1

(

9886

3.1.1
3.1.2

3.1.3

3.1.4

CLASSY--Main Program ••••.•••• 3-2
CLINIT--Read Parameters and Initialize

Tables 3-2
CLLDPX--Load Image Pixels Into ARU

Memory •••..••.••••••• 3-2
CLSTAT--Deter~ine Statistics for Trial

Set of Clusters ..•.•••.••• 3-3

iii

TABLE OF CONTENTS (Cont'd)

Section 3 (Cont'd)

3.1.5

3.1.6

3.1.7

3.1.8

3.1.9

3.1.10

MPPSTT--Use MPP To Refine Cluster
Statistics •••.•.•••••••.• 3-3

GETPROBS--Get Relative Probabilities
for Each Sample ••••••••••• 3-4

DEC5TAT--Compile Split/Merge Decision
Statistics ••.•••••••••••• 3-4

CLRPRT--Report Progress and Final
Clustering Results ••••••••••• 3-5

CLAJST--Adjust Clusters by Splitting
and Merging ••••••••••••••• 3-5

SPLITI--Split One Cluster Into Two
Subclusters ••••••••• 3-5

3.2 Procedure Hierarchy .••••••••••••• 3-6
3.3 Support Routines Unique to CLASSY ••••••.•• 3-6

3.3.1
3.3.2
3.3.3

Cluster Tree Manipulation Routines
VAX Arithmetic Procedures ••••.••
MPP Array Arithmetic Procedures.

•• 3-6
•• 3-6

• 3-9
3.4 General-Purpose VAX Support Routines Used by

CLAS S Y •••••••••••••••••••••• 3 -10

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8

Parallel Pascal Host Call Interface •• 3-11
ARU-VAX Data Transfer Procedures ••• 3-11
TAE Parameter Passing Services ..•• 3-12
TAE Image I/O Routines •••••..••• 3-12
Miscellaneous TAE Services .••••••• 3-13
VAX/VMS System Services •••••.•• 3-13
lIS Image Display Services •••.•• 3-13
IMSL Mathematical Function Library •• 3-14

3.5 General-Purpose MPP Support Routines Used by
CLASSY ..•....•......•.•... 3-14

3.5.1
3.5.2
3.5.3
3.5.4

MPP Mathematical Functions ••.••
Data Routing within ARU Subarrays ..
Data Transfers Between ARU and MCU •
ARU External Data Transfers •••••

• •• 3-14
• 3-15

· •• 3-15
· 3-lb

Section 4 - Internal Data Structures • · •• 4-1

4.1
4.2
4.3

9b8b

Cluster Tree Tables •••.•••••...
MPP Main Control Memory Usage ••.•••
Array Unit Data Structures ••••

iv

• • • . 4-1
• •• 4-3
• •• 4-3

TABLE OF CONTENTS (Cont'd)

Section 5 - Notes on Mathematical Algorithms .•. • 5-1
5.1 Multivariate Normal Cluster Statistics ••••••• 5-1
5.2 MPP Statistics for Split/Merge Decisions ..•.•. 5-4
5.3 Test for Cluster Similarity •••••••••• 5-5
5.4 Estimation of Statistics for Newly Creat~d

Clusters•......
Appendix - CLASSY ~rogram Modifications

References

v

9886

• 5-7

<' LIST OF ILLUSTRATIONS

Figure
1-1 Principal Function and Data Flows for

CLASSY •••...•..••••••..••• 1-3
5-1 Statistics for a Single Multichannel

Measurement •...•.••••..••.•. 5-2
5-2 Clusters Statistics •.•••••••• 5-3
5-3 Statistics To Support Split and Merge

Decisions •.••.•••.••••••. 5-6
5-4 Formulas for Trial Merger of Clusters •.. 5-8

LIST OF TABLES
Table
3-1 CLASSY Procedure Hierarchy •..••.•••.. 3-7

vi
9886

SECTION 1 - INTRODUCTION

1.1 PURPOSE

The CLASSY program performs unsupervised clustering of
multichannel image data using an adaptive maximum-likelihood
method that automatically tries to find the optimum number
of clusters. By using the Massively Parallel Processor
(MPP) to compile cluster statistics, rapid convergence can
be obtained for image subsets as large as 16,384 pixels.

1.2 PROCESSING PROCEDURE OVERVIEW

After reading the user-supplied processing parameters and
setting up control tables and flags, CLASSY extracts up to
Ib,384 multichannel pixels from the input image(s) and loads
them into the memory planes of the MPP Array Unit (ARU). If
the input image(s) contain more than 16,384 pixels, the
pixels to be loaded are selected quasi-randomly.

CLASSY then begins the clustering procedure by computing the
mean value vector, the covariance matrix, and the traces of
the skew and kurtosis tensors for the full set of pixels in
the ARU memory. By comparing the skew and kurtosis values
with the values that would be obtained if the data all be-
longed to a single multivariate normal distribution, CLASSY
divides the data into two clusters and estimates the mean
vector, covariance matrix, and a priori cluster probability
for each.

At this point, CLASSY enters the main program loop. This
loop alternates between two phases: a statistics-gathering
phase and a decision phase. In the statistics-gathering
phase, the estimated means, covariances, and a priori clus-
ter probabilities for the existing clusters are iteratively
refined until a (local) maximum of the likelihood function
is obtained. In the decision phase, the skew, kurtosis,

1-1

9886

cluster probabilities, and various measures of cluster
similarity are used to determine which existing clusters
should be subdivided, which should be merged into a single
cluster, and which contain so few pixels that they can be
eliminated.

When no further changes in the clusters occur, or a maximum
iteration count is reached, CLASSY generates a pseudoimage
containing the most probable cluster assignment for each
pixel and then stores both this pseudo image and a table of
the cluster statistics on disk files.

During execution, CLASSY reports the clusters created,
merged, or eliminated as the result of each decision phase.
As options, the program can report current mean value vec-
tors and covariance matrices for each cluster every time the
decision phase is entered. It can also generate and display
a pseudocolor class map after each iteration of the
statistics-refinement process.

The five main functional modules of CLASSY and the main data
flows between them and also to and from disk files and user
interfaces are shown in Figure 1-1.

1.3 RESTRICTIONS

The initial MPP implementation of CLASSY supports only 8-bit
image data, with nonnegative values between 0 and 255. A
maximum of 21 image channels are permitted.

CLASSY supports a maximum of 32 clusters. When this limit
is reached, the program performs one more iteration of the
statistics-gathering and decision phases and then terminates
execution unless one or more clusters are found that can be
consolidated or eliminated.

The appendix to this document reports on the status of
CLASSY testing and suggests program modifications and en-
nancements, and code revisions.

1-2
9886

(

USER
TERMINAL

REPORT
SPECIFIERS

REFINED
CLUSTER

STATISTICS;
CLASS-MAP

PSEUDOIMAGE

ESTIMATED CLUSTER
STATISTICS;

CLUSTER-TREE
TABLES

REFINED CLUSTER
STATISTICS;
SPLIT/MERGE
STATISTICS

DECISION LOG;
FINAL CLUSTER

...-- STATISTICS

STATISTICS
FILES

CLASS-MAP
PSEUDOIMAGE

tI
IMAGE
FILES,

MULTICHANNEL
IMAGES

PROCESSING
PARAMETERS

CONTROL TABLES;
DECISION

PARAMETERS
IMAGE

FILE NAMES

STATISTICS-REFINEMENT
PARAMETERS;

DISPLA Y-OPTION
PARAMETER

CLASS-MAP
PSEUDOIMAGE

IMAGE
DISPLA Y

Figure 1-1. Principal Function and Data Flows for CLASSY

1-3

SECTION 2 - USER'S GUIDE

CLASSY is designed to run under the Transportable Applica-
tions Executive (TAE) with or without the Catalog Manager.
The program may be invoked using TAE tutor mode or by a
single TAE command line. In the latter case, an existing
parameter file must normally be referenced.

2.1 PROCESSING PARAMETERS

CLASSY requires the user to specify the number and names of
the input image channels and the name of the file to receive
the final classification statistics. The user has the op-
tion of requesting a log of the decision process in four
different levels of detail; an output pseudoimage giving,
for each pixel, the number of the cluster to which it most
likely belongs; and a pseudocolor display of the current
most likely cluster assignments after each iteration of the
clustering algorithm.

The default values for a number of parameters used in the
various tests for cluster splitting, merging, and elimina-
tion may also be replaced by user-specified values. The
parameters are described in the following subsections. Dur-
ing a processing session, the user may also obtain full de-
tails about each parameter by invoking the TAE "Help"
facility.

2.1.1 MANDATORY PARAMETERS

Name Description

NCHAN Integer. Number of image channels; must be be-
tween 2 and 21.

INIMAGES

STATFILE

9886

Set of NCHAN file names. Names of files con-
taining input image channels; one name must be
supplied for each channel.
File name. File to receive statistics for final
set of clusters.

2-1

CRrrLOG

QU'rU1AGE

2.1.2 OUTPUT OPTIONS

Name Description

File name. File to receive 128-by-128 pseudo-
image giving final cluster assign~ent for each
pixel used to develop statistics. If no file
name is specified, pseudo image will not be saved.
Character string. Type of report to be dis-
played on terminal during each iteration of the
decision phase. Options are as follows:

"NONE" --No report
"SHORT"--Report only split/merge decisions
"MEANS"--Report also means and weights for
active clusters each time decision phase is
entered
"FULL" --Report also convergence behavior
after each MPP statistics phase and test
values used for split/merge decisions
"COVAR"--Report also covariance arrays on
entry to decision phase

Default is "SHORT."
DISKLOG Ch~racter string. Type of processing report to

be written to log file on disk; options are same
as for CRTLOG. Default is "NONE."

LOGFILE File name. Name of file to receive processing
reports. Default is "CLASSY.LOG."

DISPLAY "YES" or "NO". Specifies whether pseudocolor
class map should be sent to image display after
eacn iteration of statistics-refinement phase.
Default is "NO".

2.1.3 SrrA'fISTICS-REFINEMENT PARAMETERS

Name Description

MAXMITER

SPREAD

9886

Integer. Maximum number of iterations of mean
value refinement loop before reentering decision
phase. Default is 10.
Real. Constant to be added to all diagonal ele-
ments of covariance matrices to discourage
single-point clusters (see Section 5.1). De-
fault is 0.25.

2-~

2.1.4 DECISION PARAMETERS

Name Description
MAXDITER

SPLI~ER

ELIMTHR

CONLEVEL

LMULT

LBIAS

REMRGTHR

PDIFFTHR

MERGETHR

9886

Integer. Maximum number of iterations of deci-
sion phase; i.e., of main processing loop. De-
fault is 20.
Integer. Number of iterations for refining es-
timated statistics for newly created subclusters
during split procedure using skew and kurtosis
data; zero indicates initial estimates are to be
used without steepest-descent refinement. De-
fault is 100.
Real. Threshold value of a priori probability
at or below which a cluster will be eliminated;
value of 0.0 will prevent elimination unless
cluster is completely empty. Default is 0.001.
Real. Confidence level, in terms of standard
deviations for the normal distribution. Used to
compute thresholds for skew and kurtosis, above
which cluster is tentatively split, and for
likelihood ratio, above which tentative split is
confirmed or tentative merge rejected. Default
is 2.33, corresponding to 99-percent confidence
level.
Real. Multiplier for likelihood function before
it is compared with threshold. Default is 2.0.
Real. Bias term in normalization constant for
likelihood function (see Section 5.2). Default
is 1.0.
Real. Value of logarithm of likelihood ratio of
subclusters to parent below which tentative sep-
aration is rejected or tentative merge accepted
if probability-difference function is below
PDIFFTHR. Default is 1.0.
Real. Value of probability-difference function
between a cluster and its tentative subclusters
below which the subclusters will be eliminated
if the logarithm of likelihood ratios is below
REMRGTHR. Default is 0.0025.
Real. Threshold value of cluster similarity
function (see Section 5.3) below which two clus-
ters will be tentatively merged. Default is
0.25.

2-3

Name

ACOEFF

BCOEFF

Description

Real. Coefficient A, which weights the differ-
ence of diagonal covariance elements, in cluster
similarity function. Default is 0.3.
Real. Coefficient B, which weights the differ-
ence in a priori probabilities, in cluster simi-
larity function. Default is 0.18.

(

2.2 INPUT IMAGE FILES

The image to be processed by CLASSY may be in either of two
standard formats:

• TAE--First disk sector contains label specifying
image dimensions; imagery starts in second sector,
with each line beginning at a sector boundary

• LAS--Label record describing image size is in a
separate file, generated by Land Analysis System
(LAS) Image I/O routines and maintained by Catalog
Manager; imagery starts in first sector of image
file, with each line beginning at a sector boundary

CLASSY automatically determines the file format; if neither
a TAE nor an LAS standard label is found, processing is
aborted.

Each channel must be in a separate image file. All image
channels must contain the same number of lines and of pixels
per lines and must be in registration. Each pixel component
must be in an 8-bit byte and will be interpreted as a non-
negative number between a and 255.

If the input image contains more than 16,384 pixels, a sam-
ple of exactly 16,384 pixels will be extracted from the en-
tire image by dividing it into a 128-by-128 array of cells
and selecting one pixel quasi-randomly from each cell. If
the input image contains fewer than 16,384 pixels, pixels
containing zero in every channel will be generated to make

2-4

9H86

up the difference. This will result in an extra, spurious
cluster having an all-zero mean vector. If either dimension
of tne image is less than 128, the array of cells will not
be square, and class-map pseudo images optionally written to
an output disk file or displayed on the image terminal will
not be meaningful.

2.3 OUTPUT PSEUDOIMAGE FILE

If the user requests generation of an output pseudoimage,
CLASSY will write a single image file, containing 128 lines
of 128 pixels each, in standard TAE image format. This file
consists of a header record, containing the image dimen-
sions, followed by one record for each line, with each line
beginning on a sector boundary. Generation of an LAS format
pseudoimage file is not currently supported.
2.4 STATISTICS FILES

The cluster statistics are the principal output from
CLASSY. They are recorded in a format designed to facili-
tate their use as input to the maximum likelihood classifi-
cation program, MAXLIK.

The cluster statistics will be recorded in an ASCII file.
The file will be divided into two parts, the first giving
the cluster means, probabilities, and cluster-tree relation-
ships, and the second, the covariance data.

2.4.1 CLUSTER MEANS AND PROBABILITIES

The first part of the file will contain the following rec-
ords:

• A header containing the text "CLASSY statistics for
nn clusters"

• Properly aligned column headers for the data records

• One data record for each cluster

2-5
9886

Each data record will contain the following entries:

• Cluster serial number

• Serial number of parent cluster, or zero if not a
subcluster

• A priori probability (weight) of cluster, to three
decimal places

• Fraction of pixels for which this was the most
probable cluster, to three decimal places

• Mean value for each image channel, to two decimal
places

When a large number of channels are used (more than about
12), eacn data record will be divided into two, to fit the
length of the printer line.

2.4.2 COVARIANCE DATA

The second half of the statistics file will be introduced by
a record containing the title "Covariance Data." A covari-
ance table for each cluster will then be presented. The
first record of each table will give the cluster serial num-
ber and an equivalent radius value that represents the
standard deviation of a spherically symmetric distribution
having the same volume as the cluster. The covariance
values will be given to two decimal places; each row of the
covariance table will occupy one record. When a very large
number of channels are used (more than about 16), each row
will be split into two records to avoid overflowing the
printer line.

2.5 DECISION LOG

Tne decision log provides a record of all decisions to
split, merge, or eliminate tentative clusters and may also
be used to report the tentative cluster statistics during
processing. Normally, two versions of this log are

2-6

9886

generated: one version is written to a disk file, and the
other is displayed on the user's terminal. The amount of
detail to be included in these two copies i~ controlled by
the DISKLOG and CRTLOG parameters, respectively.

The decision log is formatted for a standard 80-column ASCII
display. Except for the header, which is included only in
the disk-file version, the two versions use identical for-
mats. Specific contents are discussed in the following sub-
sections.

2.5.1 DECISION LOG HEADER
When CLASSY begins processing, it opens the decision-log
file, unless the user specified DISKLOG = NONE, and writes a
header block. This block records the value of all the proc-
essing parameters, including those for which the user ac-
cepted the default value. Each parameter occupies a
separate line.

2.5.2 CLUSTER STATUS REPORT

Every time the decision phase is entered, CLASSY will gen-
erate a message giving the iteration number of the main
processing loop. If the DISKLOG or CRTLOG parameter is
MEANS, FULL, or COVAR, statistics for each cluster in the
current set of tentative clusters will also be written out,
as follows:

• Cluster serial number

• Serial number of parent cluster

• Current a priori weight for cluster

• Fraction of samples for which this was the most
likely cluster: i.e., the number of samples as-
signed to this cluster in the class-map pseudo image

• Cluster mean values for each image channel

2-7
9886

If the DISKLOG or CRTLOG parameter is FULL or COVAR, CLASSY
also records the convergence behavior for the preceding MPP
statistics-refinement phase. Convergence behavior for each
iteration of the main MPP processing loop, which yields an
updated set of trial means and covariances for each cluster,
is reported on a separate line. Each line contains the fol-
lowing entries:

• Loop iteration number

• Maximum change in any component of the means for
any cluster

• Number of iterations of inner loop, which adjusts
a priori weights

• Maximum change in any weight value on the first,
second, next to last, and last iteration of the
inner loop

If the DISKLOG or CRTLOG parameter is COVAR, the covariance
matrix for each current cluster will also be written. The
format for each cluster is

• Header line giving cluster serial number and a
measure of the spread of the cluster in terms of
the radius of a hyperspherical distribution having
the same volume as the actual, normally ellipsoi-
dal, distribution

• Line of column headers

• Body of matrix, with each row of values preceded by
the row number

If the number of channels is large enough that all matrix
columns do not fit on a single line, the matrix is divided
into square submatrices. Because the covariance is symmet-
ric, submatrices lying entirely below the principal diagonal
are not written out.

2-8

9886

2.5.3 CLUSTER CREATION AND DELETION REPORTS

A one- or two-line decision log entry will be written every
time one of the following occurs:

• A cluster is tentatively split into two subclusters

• A tentative separation into subclusters is confirmed

• A tentative separation into subclusters is rejected

• Two similar clusters are tentatively merged

• A tentative merge is confirmed

• A tentative merge is rejected

• A cluster is eliminated because it contains too few
pixels

Each record will include the serial number(s) of the clus-
ter(s) affected. If the DISKLOG or CRTLOG parameter speci-
fies FULL or COVAR, the test values on which the decision
was based will also be reported.

2.6 ERROR CONDITIONS

Most error conditions occurring during CLASSY execution will
be trapped and reported by executive-level software. In-
valid user parameters will be identified by the TAE command
line or tutor mode modules, and MPP hardware problems will
normally be flagged by the MPP Control and Debug Module
(CAD). Certain image file input/output (I/O) errors, how-
ever, will be reported by the CLASSY software modules in
which they are encountered. These various classes of er-
rors, and appropriate corrective action, are discussed in
the following subsections.

2-9

9886

2.6.1 PARAMETER ERRORS

All fatal parameter errors are trapped by the TAE parameter
passing routines. They are of three types:

• Missing parameter--The specified nondefaultable
parameters have been omitted. The user must enter
values for them before TAE will execute CLASSY.

• Parameter out of range--A numeric parameter is out-
side the permitted limits. These limits are speci-
fied in the "Help" file for CLASSY. A user who
wishes to experiment with extreme values of the
parameters may edit the file CLASSY.PDP to change
these limits.

• Wrong number of parameters--The number of names of
input image channels entered for parameter INIMAGES
does not match the number specified by NCHAN.
Either NCHAN or INIMAGES must be corrected.

2.6.2 MPP EXCEPTIONS AND ERRORS

The only MPP-related messages that do not need to be re-
ported to the system manager are the following:

• Waiting for MPP--MPP currently in use by another
task. The request for MPP access will be repeated
automatically, with periodic repetitions of the
"Waiting" message. The user may ask TAE to abort
execution if he or she does not wish to wait.

• Got the MPP--MPP is now free; CLASSY processing is
proceeding.

It should be noted that the MPP does not trap errors such as
arithmetic overflow or divide-by-zero.

2-10

9886

(2.6.3 IMAGE FILE I/O EKRORS

In addition to errors reported by the VAX/VMS I/O services,
CLASSY writes messages for four types of image I/O error:

• Input open failure--The channel and image file
specified in the error message could not be opened.
This may result from a typographical error when
entering the file name or because the file has been
deleted from the directory or catalog, is not in
the default directory, or is on a disk pack not
currently mounted.

• Input read error--Possible causes include an image
label that overstates the number of lines in the
image; this can be checked for noncataloged files
using the DCL DIR/SIZE utility. Otherwise, the
user should consult the system manager.

• Output open failure--The file for the class-map
pseudo image could not be opened. The user should
check for an invalid file name and then consult the
system manager.

• Image write error--AIl error occurred in writing the
class-map pseudoimage. The user should consult the
system manager.

CLASSY also generates self-explanatory warning messages if
the input file contains fewer than 16,384 pixels, so that
f111 pixels must be generated or, if there are fewer than
128 pixels per line, so that sampling is not feasible and
the Interactive Imaging System (lIS) display, if requested,
will be rendered meaningless by line wraparound.

2.7 TIMING ESTIMATeS

The execution time for CLASSY depends very much on how many
iterations are required to achieve convergence to a stable
result as well as on the number of clusters and number of

2-11
9886

image channels. Normally, most of the time is spent by the
MPP in refining statistics for a given set of trial clusters.
When the host VAX computer is heavily loaded, however, the
VAX time needed for split/merge decisions may be significant.

Very roughly, the time needed by the MPP for each iteration
of the main processing loop is proportional to the current
number of clusters clnd to the square of the number of image
channels. If the image contains only well-separated clus-
ters, the required number of iterations of the main loop
will tend to be lower and convergence within each main iter-
ation will be much faster than if a number of clusters are
heavily overlapping. The user's choice of certain param-
eters specifying test thresholds, etc., will also affect
processing time.

Worst-case upper limits for MPP time for one iteration of
the main loop are estimated at 0.1 second per cluster for
4-channel imagery and 1 second per cluster for lG-channel
imagery. For Landsat-type imagery containing between 10 and
30 meaningful clusters, it is expected that the first 5 or
6 iterations of the main loop will divide the image into as
many as 30 trial clusters. In addition, at most 10 to 15
further iterations will be needed to reach a reasonably
stable set of distributions. Maximum total MPP times are
thus unlikely to exceed 1 minute for 4-channel imagery and
10 minutes for 16-channel imagery.

2-12

9886

SECTION 3 - PROGRAM STRUCTURE

3.1 CLASSY MODULES

Source code for CLASSY is divided into 10 modules, of which
7 execute in the host VAX computer and 3 in the MPP. The
five modules that are called directly by the main program
correspond to the five main functions depicted in Fig-
ure 1-1. The 10 modules are listed below.
VAX Modules

CLASSY
CLINIT

CLLDPX

CLSTAT

CLRPRT

CLAJST

SPLITl

MPP Modules

MPPSTT

GETPROBS

9886

Main program
Called by CLASSY to get parameters and initial-
ize tables
Called by CLASSY to load image pixels into ARU
memory planes
Called by CLASSY to reformat data for the MPP
and invoke MPP-resident code
Called by CLASSY to report final cluster statis-
tics and, optionally, convergence behavior and
intermediate cluster statistics
Called by CLASSY to adjust tentative set of dis-
tributions by examining refined statistics for
current clusters to identify clusters that
should be split, merged, or eliminated
Called by CLAJST to compute trial means and co-
variances for the subclusters of one cluster
that is being tentatively split

Called by CLSTAT to refine the weights, means,
and covariances of a trial set of clusters and
compute statistics needed for split/merge deci-
sions
Called by MPPSTT to compute relative probabili-
ties of cluster membership for each sample
(pixel) that maximize likelihood function for a
given set of cluster means and covariances

3-1

DBCSTAT Called by MPPSTT to compute skew and kurtosis
values used by CLAJST to identify clusters that
are candidates for splitting and similarity
measures used to accept or reject tentative
split/join decisions

The following subsections provide a pseudocode overview of
the function of each of the 10 modules.

3.1.1 CLASSY--MAIN PROGRAM

BEGIN
Initialize DR780 for data transfers between VAX and ARU
Get processing parameters and initialize tables
Extract pixels from input image and load into ARU memory
DO UNTIL stable set of clusters is found DO

Refine statistics for tentative set of clusters
Report statistics for current clusters
Modify cluster set by splitting and merging

END DO
Save final cluster statistics in disk file
If requested, save class-map pseudo image on disk
END

3.1.2 CLINIT--READ PARAMETERS AND INITIALIZE TABLES

BEGIN
Get all parameters or their defaults from TAE parameter-

passing interface
Compute test thresholds for skew, kurtosis, and likeli-

hood ratios
Initialize cluster tree tables
IF decision log file specified
THEN

Copy parameters to log file
END IF
END

3.1.3 CLLDPX--LOAD IMAGE PIXELS INTO ARU MEMORY

BEGIN
Open image files and determine image size
Create sampling table specifying pixels to be taken from

each line of input image
Extract image pixels and load into ARU memory
END

3-2

9886

3.1.4 CLSTAT--DETERMINE STATISTICS FOR TRIAL SE~ OF CLUSTERS

BEGIN
Convert estimated mean values for each cluster into scaled

format for MPP
Load estimated covariances into MPP stager memory
IF class-map pseudo images are to be displayed
THEN

Load color triplets into display lookup tables
END IF
Refine statistics using MPP
Extract updated cluster statistics, additional statistics

needed for split/merge decisions, and class-map pseudo-
image from MPP stager memory

END

3.1.5 MPPSTT--USE MPP TO REFINE CLUSTER STATISTICS

BEGIN
IF only one cluster
THEN

Set cluster weight and all relative probabilities to 1
Compute mean value vector
Compute covariance matrix

ELSE
DO UNTIL cluster means become stable

Invert covariance matrices
Compute relative probabilities of each sample relative

to each cluster, using current estimates of means and
covariances

IF cluster maps are to be displayed
THEN

Assign each pixel to its most likely cluster
Send cluster map to lIS display

END IF
Update mean value vectors using new weights
Update covariance matrices using new means
Record change in means in convergence-report table

END DO
END IF
Load covariance matrices into stager memory for subsequent

retrieval by VAX
Invert covariance matrices
Load inverse covariance matrices into stager memory
Compute statistics needed for split/merge decisions
Load decision statistics into stager memory
Assign each pixel to its most likely cluster
Load cluster map into stager memory
END

3-3
9886

3.1.6 GETPROBS--GET RELATIVE PROBABILITIES FOR EACH SAMPLE

BEGIN
Reformat inverse covariances using hexadecimation
DO FOR each cluster

Compute probability density functions for each pixel
relative to each cluster using current cluster means
inverse covariances, and a priori cluster weights

Compute relative probability for each PE, using partial
sums of densities over cluster subsets

BND DO
DO UNTIL stable a priori probabilities are obtained

DO FOR each cluster
Sum relative probabilities over all samples
Sum differences between relative probabilities and

a priori probabilities over those samples for which
difference is positive

Update estimates of relative probabilities
END DO
Compute new a priori probabilities
Enter maximum improvement into convergence report

END DO
Compute normalization factors for means, etc.
END

3.1.7 DECSTAT--COMPILE SPLIT/MERGE DECISION STATISTICS

BEGIN
Hexadecimate inverse covariance matrices to facilitate rapid

extraction via corner point module
DO FOR eaCh cluster that does not have subclusters

Compute contraction of two components ot Skew/kurtosis
tensors using inverse covariances as metric

DO FOR each channel
Compute corresponding component of trace of skew tensor
Compute corresponding row of trace of kurtosis tensor

END DO
END DO
DO FOR each cluster that does have subclusters

Compute subcluster likelihood ratio
Compute sum of squares of subcluster probability differ-

ence ratios
END DO
Normalize tensor components for each cluster by dividing by

sum of relative probabilities
END

3-4
9886

(3.1.8 CLHPRT--REPORT PROGRESS AND FINAL CLUSTERING RESULTS
BEGIN
IF final clusters not yet attained
THEN

Report results of last statistics-refinement phase
ELSE

Write final cluster statistics to statistics file
Write class-map pseudo image to disk, if wanted
IF decision log being recorded and final decision

iteration altered clusters
THEN

Record final statistics in decision log file
END IF

END IF
END

3.1.9 CLAJST--ADJUST CLUSTERS BY SPLITTING AND MERGING

BEGIN
Scan cluster tree to identify clusters that should be

tentatively split or merged and confirm or reject previous
tentative split/merge decisions

Squeeze out unused cluster tree nodes
Compute trial parent means and covariances for pairs of

clusters being tentatively merged
Compute trial subcluster means and covariances for clusters

being tentatively split
END

3.1.10 SPLIT1--SPLIT ONE CLUSTER INTO TWO SUBCLUSTERS

BEGIN
Rotate skew and kurtosis to frame with unit covariance matrix

and diagonal kurtosis
Make first guess at subcluster statistics
IF steepest descent refinement requested
THEN

DO FOR specified number of iterations
Compute derivatives of objective function
Adjust relative means, covariances, and weights
Adjust step size

END DO
END IF
Rotate trial statistics back to image frame
END

3-5

9886

3.2 PROCEDURE HIERARCHY

The overall hierarchy of procedures within these modules is
shown in Table 3-1, which also briefly describes the func-
tion of each.

3.3 SUPPORT ROUTINES UNIQUE TO CLASSY

In addition to the routines shown in Table 3-1, CLASSY uses
a number of routines whose functions are primarily to sup-
port tne main algorithmic procedures. Many of these rou-
tines are general-purpose VAX, TAE, or MPP procedures. Some
additional support routines have, however, been written
specifically to support CLASSY. These routines can be di-
vided into three groups: VAX cluster tree manipulations,
VAX arithmetic routines, and MPP array arithmetic procedures.

3.3.1 CLUSTER TREE MANIPULATION ROUTINES

Whenever the tentative set of clusters is to be altered by
splitting one cluster into subclusters, merging two or more
clusters, or eliminating trial clusters, the cluster tree
tables must be updated and relinked to reflect the change.
These activities are facilitated by the following procedures
and functions, all of which are called only by module CLAJST.

Name
freenode

getnode
getcolor

subweights

Function

Procedure to free a cluster tree node and
make it available for reuse
Function to find first free node
Procedure to assign color codes to newly cre-
ated node(s)
Function to sum the weights of all subclus-
ters of a particular cluster

3.3.2 VAX ARITHMETIC PROCEDURES

Parallel Pascal permits performing arithmetic operations
between arrays without explicitly specifying loops over each
element. However, these automatic array operations assume

3-6

9886

Table 3-1.

Procedure

CLASSY Procedure Hierarchy (1 of 2)

Function

classy
clinitmain

getparm
setthr

inittree
initlog

clldpxmain
imgopen
offsets
getsamp

clstatmain
setsubdim

scalemeans
ldcovar
setlut
mppsttmain

getmeans
getcovar
invcovar
gpmain

rpestim

rpadjust

makemap
dcmain

skewkurt
simmeas

likerat
probdiff

floatmeans
getarustats

clrprtmain
wrthreader
wrtreport
wrtstats
wrtimage

9BB6

Main program, in module CLASSY
Main procedure for module CLINT
Get parameters via TAE interface
Compute thresholds for split/merge
tests
Initialize cluster tree tables
Initialize processing log file
Main procedure for module CLLDPX
Open input image files and get sizes
Compute image-sampling offsets
Load image samples into ARU memory
Main procedure for module CLSTAT
Set dimension of ARU subarrays for
covariance matrices, etc.
Convert mean values to scaled integers
Load covariance matrices into ARU
Set color lookup tables for display
Main procedure for module MPPSTT
Compute means for all clusters
Compute covariances for all clusters
Invert covariance matrices
Main procedure for module GETPROBS
Estimate sample relative probabilities
from means, covariances, and weight
Adjust estimated probabilities to max-
imize likelihood function
Generate class-map image
Main procedure for module DECSTAT
Compute sKew and kurtosis arrays
Compute cluster similarity measures
Compute subcluster likelihood ratios
Compute probability difference function
Convert scaled means back to real
Get arrays returned from ARU
Main procedure for module CLRPRT
Write header for processing log report
Report one processing iteration
Write final cluster statistics to file
write class-map image to file

3-7

Table 3-1.

Procedure

cla)stmain
scantree

elim
trysplit
separate
sublim
trymerge

packtree
domerge
dosplit

splitlmain
firstguess
descend

derivs
bldpair

9lj86

CLASSY Procedure Hierarchy (2 of 2)

Function

Main procedure for module CLAJST
Scan cluster tree for clusters to be
split, merged, or eliminated
Eliminate very small cluster
Test cluster for tentative splitting
Eliminate parent and retain subclusters
Eliminate subclusters and retain parent
Test clusters for tentative merger
Squeeze out unused cluster tree nodes
Create parent for trial merger
Create subclusters for trial splitting
Main procedure for module SPLITl
Estimate statistics of new subclusters
Refine estimates using steepest descent
Compute derivatives needed for descent
Finish setting up subcluster statistics

3-8

(
that each array contains meaningful data in all its ele-
ments. decause CLASSY will frequently be executed using
many fewer than the maximum number of image channels, and
because a number of matrix operations take time proportional
to the square or cube of the number of channels, special
routines have been written that use explicit loops over the
actual number of channels.

The initial implementation of Parallel Pascal does not pro-
vide functions for finding the maximum and minimum of two
scalars. Because these functions are needed for a number of
computations, temporary versions have been written for
CLASSY. The resulting VAX arithmetic functions and proce-
dures are listed below.

Name

matprod

dotprod

Called By

CLAJST,
SPLITl

CLAJST

Function

Procedure to form product of two
matrices
Function to compute scalar (dot)
product of two vectors, using a ma-
trix as metric tensor

mvprod SPLITl Procedure to left multiply a vector
by a matrix

anticom SPLITl Procedure to compute anticommutator
of two matrices

realmax SPLITl Function returning maximum of real
scalars

realmin SPLITl Function returning minimum of real
scalars

3.3.3 t>1PPARRAY ARITHMETIC PROCEDURES

To maximize the number of clusters and image channels that
can be supported, CLASSY must allocate as few ARU memory
planes as possible for temporary storage. The Parallel
Pascal code generator, however, allocates planes for all
parallel arrays declared within a procedure at the time that
the procedure is entered, and it does not deallocate them
until the procedure is exited. It is therefore awkward to

3-9

9886

reuse the same set of planes for different sets of interme-
diate results if the results are of different data types.
For this reason, a number of very simple computations have
been broken out as separate procedures or functions, so that
planes needed for intermediate results can be immediately
deallocated upon completion of the procedure. These proce-
dures are listed below.

Name

blknorm

zp

zpz

pr

zz

zmb

Called By

MPPSTT,
DECSTAT

MPPSTT,
DECSTAT

MPPSTT

MPPSTT,
GETPROBS

GETPROBS,
DECSTAT

DECSTAT

Function

Normalize a block of real values in
ARU
Multiply one component of each image
sample by relative probability
values for one distribution
Multiply results of zp by another
image component
Multiply a real array by relative
probability values for one distribu-
tion
Multiply one component of each sample
by another component
Multiply real array by one image
component and initiate block summa-
tion over all processing elements
(PE)s

3.4 GENERAL-PURPOSE VAX SUPPORT ROUTINES USED BY CLASSY

In addition to the procedures and functions written spe-
cifically for CLASSY, a large number of standard support
routines are used by both VAX and MPP modules. The general-
purpose VAX procedures used by CLASSY can be divided into
the following groups:

• Parallel Pascal host call interface
• ARU-VAX data transfer procedures
• TAE parameter-passing services
• TAE image I/O routines
• Miscellaneous TAE services
• VAX/~1S system services

3-10

988b

(•
•

lIS image display procedures
IMSL mathematical function library

The routines in each group that are used by CLASSY are de-
scribed briefly in the following subsections. They are
given the names by which they are known to VAX/VMS. The
actual calls from CLASSY append "$h" to these names to use
the HOSTCALL facilities.

3.4.1 PARALLEL PASCAL HOST CALL INTERFACE

The Parallel Pascal code generator does not follow standard
VAX conventions for calling subroutines. As a result, all
calls to standard VAX support software must be preprocessed
to convert arguments to the format expected by the called
module.

This conversion is done by a standard module. The Macro
source of this module contains a specification line for each
called subroutine, giving its standard VAX library name, the
name by which it is called from the Parallel Pascal module,
and the type of each argument. The VAX Macro Assembler,
using a macro definition contained in the source module,
builds a compact argument-descriptor table for each sub-
routine. At run time, these argument descriptors are used
to carry out the argument reformatting. This module is sum-
marized below.

Name

HOSTCALL

Function

Invoke host computer (VAX) functions and proce-
dures, written in standard VAX/VMS languages,
after first reformatting arguments to conform
to the VAX procedure-calling standard

3.4.2 ARU-VAX DATA TRANSFER PROCEDURES

In general, CLASSY transfers data between VAX memory and ARU
array memory by using the MPP stager memory as an interme-
diate buffer that can be loaded by commands from either the

3-11
988b

VAX-resident COde or the main control unit (MCU)-resident
code. The transfer is achieved using the VAX modules listed
on the following page.

Name

IDENTBUFF

OPENVCU

LDARU

RDSTAGER

CLOSVCU

Called B~

CLASSY

CLSTAT

CLLDPX,
CLSTAT

CLSTAT

CLSTAT

Function

Initialize DR780 channel driver
and define VAX buffer area for
data transfers
Open virtual channel through MPP
stager
Load ARU memory from VAX array

Read data, placed in stager by
MPP, into VAX memory
Close virtual channel through MPP
stager

3.4.3 TAE PARAMETER PASSING SERVICES

CLASSY module CLINIT uses standard TAE facilities to obtain
user parameters. The routines called are listed below.

Name

XRINIM
XRFILE
XRINTG
XRREAL
XRSTR
XRATTR

Function

Receive parameter block from TAE
Get file name parameter
Get integer parameter
Get real parameter
Get character-string parameter
Get parameter attributes

3.4.4 TAE IMAGE I/O ROUTINES

CLASSY reads and writes images using standard TAE image I/O
routines. To permit reading images in standard LAS image
format also, in which the header record containing image
size data is located in a separate file, the standard TAB
routine for opening an input image (XIOPIN) has been re-
placed by a modified version (LIOPIN). LIOPIN automatically
recognizes images in LAS format and extracts the required

3-12
9886

(size values from the header file. The routines used to read
and write images are listed below.

Name Called By

LIOPIN CLLDPX

XIOPOU CLRPRT

X IREAD CLLDPX

XIWRIT CLRPRT

XIWAIT CLLDPX,
CLRPRT

XICLSE CLLDPX,
CLRPRT

Function

Open TAE or LAS format image tile for
input
Open image file for output in stand-
ard TAE format
Initiate reading of one block of
imagery from disk file into VAX memory
Initiate writing of one block of
imagery from VAX memory to disk file
Wait for completion of previous image-
file read or write
Close image flle on completion of data
transfer

3.4.5 MISCELLANEOUS TAE SERVICES

CLASSY uses one additional TAE service to report unrecover-
able I/O errors and terminate processing. This service is
summarized below.

Name

XZEXIT

Called By

CLLDPX,
CLRPRT

Function

Terminate processing with status re-
port

3.4.6 VAX/VMS SYSTEM SERVICES

CLASSY uses one standard VMS service to associate a Parallel
Pascal text file with a standard VAX file descriptor. This
service is summarized below.

Name

$CRELOG

Called By

CLINIT,
CLRPRT

Function

Assign file name to logical deVlce

3.4.7 lIS IMAGE DISPLAY SERVICES

If the user chooses to monitor the progress of the cluster-
lng algorithm by displaying class-map pseudo images on the
lIS image display, the lookup tables used to assign a color

3-13

9886

triplet to each cluster must be updated each time clusters
are added or deleted. The actual transfer of tables to the
IIS is done using the routine summarized below.

Name

LOADLUT
Called BX
CLSTAT

Function

Load IIS image display lookup tables

3.4.8 IMSL MATHEMATICAL FUNCTION LIBRARY

CLASSY uses one function from the IMSL library of mathemati-
cal and scientific subroutines, as summarized below.

Name
EIGRS

Called By
SPLIT 1

Function
Determine eigenvalues and eigenvectors
of a real, symmetric matrix

3.5 GENERAL-PURPOSE MPP SUPPORT ROUTINES USED BY CLASSY

The general-purpose MPP procedures used by CLASSY can be
divided into the following groups:

• MPP mathematical functions
• Data routing within ARU subarrays
• Data transfers between ARU and MCU
• ARU external data transfers

3.5.1 MPP MATHEMATICAL FUNCTIONS

In addition to the intrinsic Parallel Pascal mathematical
functions, CLASSY uses several additional procedures to
carry out standard mathematical functions, as listed below.

Name

blksum/
bsmopn/
bsmcls

bsmnum

insert

9886

Called By

MPPSTT,
GETPROBS,
DECSTAT

MPPSTT,
DECSTAT

MPPSTT

Function
Sum values over all PEs, using par-
tial summation by blocks

Generate, for each PE, the serial
number of the blocked sum stored at
that PE
Insert a set of contiguous ARU
planes from one array into another
array

3-14

(Name
minvpd
scale

scalrr

Called By
MPPSTT
r-1PPSTT,

GETPROBS,
DECSTAT

MPPSTT,
GETPROBS,
DECSTAT

Function
Invert positive definite matrices
Scale integer or cardinal arrays

Scale real arrays by incrementing
exponent

3.5.2 DATA ROUTING WITHIN ARU SUBARRAYS
CLASSY packs covariance matrices for all clusters into a
single set of ARU planes by using a different subarray of
PEs to contain each matrix. Manipulation of rows and col-
umns within each subarray is facilitated by the standard
procedures listed below.

Name
rchtrn
rcnum

Called By
MPPSTT
MPPSTT

Function
Half transpose PE subarrays
Generate subarray row and column num-
bers at each PE

3.5.3 DATA TRANSFERS BETWEEN ARU AND MCU
CLASSY calls a number of standard MPP procedures to transfer
data between the ARU memory planes and arrays in MCU memory,
as listed below.
Name

extblk

exthdm

getlpe

hxdcmt

9886

Called By
MPPSTT,

GET PROBS

GETPROBS,
DECSTAT

M1:'PSTT,
GETPROBS,
DECSTAT

MPPSTT,
GETPROBS

Function
Extract sums over all PEs that were
computed by partial summation over
blocks
Extract values from arrays that have
been reformatted using hexadecimation
Extract a data value from a single PE,
specified by its row and column number

Reformat ARU planes to permit rapid
data extraction via the corner point
module

3-15

Name

ldsuba

Called By
MPPSTT

Function

Load a subarray of PEs from an MCU
array

3.5.4 ARU EXTERNAL DATA TRANSFERS

Although the host VAX is given most of the responsibility
for setting up and carrying out data transfers between the
MPP and other devices, only the MPP-resident modules of
CLASSY know when a given ARU array is ready for transmis-
sion. Accordingly, standard MPP procedures are needed to
initiate external data transfers from the ARU. The proce-
dures used by CLASSY are listed below.

Name

Idstager

TBD

9886

Called By

MPPSTT

MPPSTT

Function

Load a set of ARU planes into the
stager buffer
Transfer a set of planes from the
ARU to the image memory of the lIS
image display

3-16

SECTION 4 - INTERNAL DATA STRUCTURES

All arrays and variables used by CLASSY modules are defined
briefly in the source code. In most cases, their usage is
obvious and will not be described here. The arrays used to
record the hierarchy of clusters and subclusters may, how-
ever, be somewhat confusing and are therefore discussed.

In addition, because the processing algorithms and data
storage philosophy reflect ARU and MCU memory limitations,
some notes on MPP memory usage and allocation are included.
No attempt has been made to minimize use of VAX memory be-
cause Parallel Pascal takes full advantage of the virtual
memory facilities of the VAX/VMS operating system.

4.1 CLUSTER TREE TABLES

The repeated splitting and merging of tentative clusters
leads to a hierarchical structure of clusters, which can
conveniently be represented as a tree. A fictitious root
node, node 0, is the parent of one or more actual clusters,
which in turn may serve as the parent node(s) for additional
clusters.

Whenever a cluster is tentatively split, two new nodes are
created for the subclusters. Both new nodes point back to
the parent cluster. The parent contains a pointer to one of
the new nodes, which in turn contains a link pointer to the
second new node.

When two clusters are found to be so similar that they are
to be tentatively merged, a new node is created for the
merged cluster. This is inserted in the cluster tree hier-
archy at the position occupied by one of the two clusters
and contains a pointer to it as a subcluster. The node con-
taining the other cluster, together with any subclusters, is
relinked as a second subcluster of the new cluster.

4-1

9886

(
After the MPP processing has refined the estimated statis-
tics and computed the likelihood ratios and average proba-
bility differences between each parent cluster and its set
of subclusters, CLASSY may decide to delete either the
parent cluster or its subclusters. The corresponding clus-
ter nodes are then unlinKed from the cluster tree and made
available for reuse.

To simplify scanning of the tree tables by the MPP modules,
the cluster tree is packed after each iteration of the deci-
sion phase, so that all free nodes occur after the last node
currently in use.

The tree structure is recorded in a set of arrays, each of
which has one entry per node, as listed below.

Name

Parent

Sub
Link

Oldnode

Remap

Serial

9886

Contents

Number of the node containing parent for this
node; 0 denotes the root node, -1 indicates node
is not in use.
Number of node containing leftmost subcluster.
Number of node containing closest sibling on
right; 0 indicates this is rightmost sibling. A
negative value preserves the previous link of a
node that has been deleted but whose siblings
may not yet have been fully processed by proce-
dure scantree in module CLAJST.
Number of node to which cluster was assigned
before last packing of node list. This is
needed because means, covariance, skew, and kur-
tosis data are not moved to new locations when
the nodes are packed.
New node number corresponding to old node in
class-map pseudoimage array.
Serial number assigned when cluster was first
tentatively created. Not altered by node pacK-
ing; used as reference number in decision log
reports of split/merge decisions and current
cluster statistics.

4-2

Name

Creation

Color
Palette

Contents
Iteration of main processing loop during which
cluster was first tentatively created. This
array is not referenced in the current version
of CLASSY but may prove useful if code is added
to reduce repeated creation and deletion of sub-
clusters of a given cluster.
Image display color triplet assigned to cluster.
Color usage record; set to 1 if color is as-
signed to an active node; otherwise, set to O.

4.2 MPP MAIN CONTROL MEMORY USAGE

CLASSY uses approximately 45,000 of the available
65,000 bytes of memory in the MPP Main Control Unit. Most of
this memory is occupied by program code.

The inverse covariance matrices, which would occupy nearly
30,000 bytes for the maximum allowed number of channels and
classes, are not stored in MCU memory. Instead, they are
kept in a set of ARU memory planes. When needed as scalar
values in computations, values for one cluster at a time are
transferred into a local array in MCU memory.

to reduce ARU computation time, two types' of data are stored
in MCU memory as scaled integers rather than floating point
values. These arrays are listed below.

Name

Means,
Oldmeans

Oldwghts,
Newwghts

Contents

Mean values for each cluster; 16-bit integer,
consisting of the sign bit (always 0), an 8-bit
integer part, and a 7-bit fraction
A priori cluster weights; 12-oit cardinal,
normalized so that the maximum value, 4095,
represents 1.0

4.3 ARRAY UNIT DATA STRUCTURES

Because CLASSY needs to reference image values for a large
number or channels and relative probabilities for a large
number or clusters repeatedly, data are packed very tightly

4-3

988b

(into the ARU memory planes and the planes must be reused as
much as possible. Array space is permanently allocated for
three sets of data; namely, raw image values, cluster rela-
tive probabilities, and inverse covariance matrices. The
remaining planes are reused repeatedly for different data in
different modules and procedures. In some cases, it has
been necessary to restructure a computation slightly or to
break out two or three lines of code as a separate procedure
or function, to avoid having too many temporary arrays al-
located at one time. ARU memory is allocated as summarized
below.

Planes

o
1-168

169-556

557-588

5~9-87b

877-974

975-1023

9886

Array Name

Image

Relprob

Matrix

(Various)

Contents

Reserved for system use
Image data, 21 channels of 8 bits
each
Relative cluster probabilities,
scaled 12-bit cardinals (represent-
ing values between 0.0 and 1.0) for
32 clusters
Inverse covariance matrices; each
matrix occupies a different subarray
of PEs
Temporary storage explicitly allo-
cated by CLASSY modules
Temporary storage automatically al-
located by Parallel Pascal code gen-
erator and computational primitives
Reserved for system use

4-4

(SECTION 5 - NOTES ON MATH&~ATICAL ALGORITHMS

The MPP implementation of CLASSY uses basically the same
mathematical procedures as the original Lennington and
Rassbach version (References 1 and 2). To take advantage of
the parallel structure of the MPP and work within the avail-
able number of ARU memory planes, however, some of the math-
ematical formulas have been restructured. The versions of
the algorithms used for the MPP implementation are outlined
in the following subsections.

5.1 MULTIVARIATE NORMAL CLUSTER STATISTICS

The CLASSY algorithm assumes that a set of multichannel
image measurements can be meaningfully grouped into an ini-
tially unknown number of clusters. For each cluster, the
probability density function is a multivariate normal dis-
tribution, defined by a mean value vector, a covariance
matrix, and an a priori cluster probability. The distribu-
tions for different clusters may overlap, in which case,
measured image samples that lie in the overlap region are
assigned partly to each of the overlapping clusters in pro-
portion to the values of the probability density function
and the a priori probability for each cluster.

The statistics refinement phase of CLASSY assumes a particu-
lar set of clusters and initial estimates of their means,
covariances, and a priori probabilities. The initial esti-
mates are updated by a series of iterative corrections until
a reasonable approximation to a (local) maximum of the like-
lihood function is achieved.

The statistics that define each multivariate-normal distri-
bution are defined in Figures 5-1 and 5-2. The set of meas-
urements for d spectral cnannels at each of N image samples
are represented by a set of N sample vectors, as defined by
Equation (1-1) in Figure 5-1. The probability density for

5-1

9ti86

(

A set of m multivariate normal distributions are to be fit to N sets of measurements, each of which
consists of d channels. Let the measured values for sample s be represented by the vector

(1-1)

For a given set of distributions described by the mean vectors J.I1through J.Imand the covariance
matrixes I1 through Im' the probability density for Xs relative to distribution i is

(1-2)

where the displacement of sample s from the distribution is given by the vector

(1-3)

The relative probability that sample s belongs to the distribution described by (J.Ii'Ii) rather than to
one of the other distributions is given by

(1-4)

where values a1 through am represent the a priori probabilities for distribution 1 through m, respec-
tively, and the average probability density for sample s is given by

(
\

m
Ps = .! aj Pis

1= 1

Figure 5-1. Statistics for a Single Multichannel
Measurement

5-2

(1-5)

The set of distributions that maximize the likelihood function over the N sets of measurements obey
the relationships

a,
I

N
(1/N) L Pis'

s=1
1,2, ' , , , m

(2-1)

N
~i = (1/Naj) L PisXs'

s=1
1,2, ... , m

(2-2)

I·I 1,2, ' , , , m
(2-3)

If the set of distributions is only an approximation to the maximum likelihood case, the approximations
can be iteratively refined by repeated evaluation of Equations (1-2), (1-4), and (2-1) through (2-3).

For nonoverlapping distributions, convergence is fairly rapid. In particular, Equation (2-1) immediately
gives the new value of ai for a new set of ~i and Ii' For overlapping distributions, on the other hand,
Equation (2-1) gives very slow convergence. Lennington and Rassbach (Reference 1, equation 28)
introduced a modified form of Equation (2-1) that accelerates convergence when overlap is present,
Their formula for the updated estimate ai' in terms of the old value ai can be written in the form

a.'
I aj --------N-----------

(1 - a'I)[a" N - L P,] + L (PI'S - a'l)
S = 1 IS Pis>aj

(2-4)
509O157'} 84

,
\

Figure 5-2. Cluster& Statistics

5-3

/
\ cluster i at sample s is calculated using Equations (1-2)

and (1-3). The relative cluster probability, which repre-
sents the relative probability that sample s belongs to
cluster i rather than one of the other clusters, is then
calculated using Equations (1-4) and (1-5).

The relative cluster probabilities computed for all samples
are then used to compute new estimates of the mean value
vector and covariance matrix for each of the m clusters
using Equations (2-2) and (2-3) in Figure 5-2.

Although improved estimates for the a priori cluster prob-
abilities could be obtained using Equation (2-1), each iter-
ation of the calculation gives only a small correction to
the estimate when there is substantial overlap between clus-
ters. Lennington and Rassbach (Reference 1) showed that
convergence can be significantly speeded using a modified
expression for the a priori cluster probability. This ex-
pression, rewritten to facilitate evaluation using the MPP,
is given by Equation (2-4).

The true, continuously varying image is approximated by a
set of integer-valued samples, each of whose components can
take on at most 256 different values. There is thus a
danger that a very compact cluster might collapse into a
single point in feature space: i.e., a cluster all of whose
members have identical values. To avoid this, a small posi-
tive constant, defined by the user parameter SPREAD, is
added to each diagonal element of each covariance matrix
before the inverse covariance matrices are computed.

5.2 MPP STATISTICS FOR SPLIT/MERGE DECISIONS

After the means, covariances, and a priori probabilities of
a trial set of clusters have converged to a stable set of
values, the MPP is used to compile additional statistics.
These statistics help identify which clusters should be

5-4
9~86

(tentatively split and confirm or reject previous split and
merge decisions: they are defined in Figure 5-3.

If a given cluster has no subclusters, it is a potential
candidate for splitting. The decision whether to split the
cluster, and if so, how, uses the traces of the skew and
kurtosis tensors, given by Equations (3-1) and (3-2) in Fig-
ure 5-3. If a cluster has already been tentatively split
into subclusters, the likelihood ratio between the parent
and the combination of its subclusters (given by Equa-
tion (3-3)) and a measure of similarity between the parent
and its subclusters (given by Equation (3-4)) must be com-
piled. Both of these equations have been rewritten from the
form used by Lennington and Rassback to (1) make them depend
on the relative cluster probabilities of each sample and the
a priori probabilities of the clusters, rather than on the
probability density values, and (2) use subcluster prob-
abilities relative to all clusters, rather than just rela-
tive to the parent. The bias term in Equation (2-3) may be
specified by user parameter LBIAS.

5.3 TEST FOR CLUSTER SIMILARITY

During a typical processing run, the first few iterations of
CLASSY's main loop serve to split the data into a large num-
ber of trial clusters. As the result of successive refine-
ments of cluster parameters, however, it is quite likely
that some clusters will become very similar to other clus-
ters, even though they were originally split off from dif-
ferent parent clusters. When two such clusters have become
sufficiently similar, they should be merged into a single
cluster.

Rather than using the MPP to compute sample-by-sample simi-
larity measures between all possible pairs of clusters,
CLASSY uses a crude similarity test, based solely on overall
cluster statistics, to identify pairs of clusters that are

5-5

988b

Measures of the deviation of the samples in a cluster from the multivariate normal distribution are
derived from two statistics, the trace of the skew tensor,

and the trace of the kurtosis tensor,

(3-1)

K·I (3-2)

The logarithm of the likelihood ratio between a parent cluster i and the set of its mi subclusters is
given by

= -(mj - 1)(2d + b) +

where b is a bias term, on the order of 1.

N mi
~ Inll ~ Pi.s)/Pis)

s=1 j=1 J
(3-3)

A sample-by-sample measure of similarity between a parent cluster and its subclusters is

E·I
N

(1IN) ~ ((Pis' - Pis)/(Pis' + pis))2
s=1 (3-4)

where the combined probability of the subclusters, normalized to the same a priori probability as the
parent, is

m· m·
I I ~

Pis
,

la/ ~ ai.l ~ Pi·s= ij= 1 J j= 1 J
(3-5)

Figure 5-3. Statistics To Support Split and
Merge Decisions

5-6

(candidates for merger. The similarity measure used is given
in Equation (4-1) in Figure 5-4.

5.4 ESTIMATION OF STATISTICS FOR NEWLY CREATED CLUSTERS

When two clusters have been adjudged sufficiently similar to
warrant a trial merger, the initial statistics for their new
parent cluster can be readily computed from their means and
covariances using Equations (4-2) and (4-3). Finding trial
statistics for the new subclusters of a cluster that is to
be tentatively split, on the other hand, is quite diffi-
cult. As Lennington and Rassbach point out (References 1
and 2), the number of equations relating the subcluster
means, covariances, and a priori weights to the parent
means, covariances, and traces of skew and kurtosis tensors
is one less than the number of statistics components to be
determined, so an exact solution is not possible. Further-
more, the available equations are not linear, so even ap-
proximate methods of solution tend to become complex.

The MPP version of CLASSY uses the same procedure as the
Lennington and Rassbach version to generate trial subcluster
statistics. The skew and kurtosis tensors are first rotated
to a coordinate frame in which the covariance matrix is
identical to the unit matrix and the trace of the kurtosis
tensor is diagonal. The difference vector between the two
subcluster means is then estimated by assuming that it is
along the (rotated) coordinate axis for which the kurtosis
deviates most markedly from the expected value for a
multivariate-normal distribution. The difference between
the covariance matrices for the two subclusters is also
estimated. These arrays are then rotated back to the coor-
dinate frame of the image and used to compute the trial sub-
cluster statistics.

As an option, the user may attempt to refine these initial
statistics estimates using the method of steepest descent.

5-7

9886

An alternative measure of similarity between clusters i and j, based solely on the overall cluster statistics
rather than jndividual sample values, is given by

S..
I)

+ a.I. - 1
))

aj + aj

(4-1)

where d again denotes the number of channels.

The means and covariances for a cluster k formed by merging clusters i and j are

a· a·1)
J.lk J.lj + J.I'

aj + a· a· + a·
)

) I) (4-2)

and

a· a· ajaj1)
J.I.)TIk I· + I· + (J.lj - J.I')(J.I.- ..,.

a.)2
co

I) (aj
) I)

a· + a· a· + a· + ~
1) 1)) '"~(4-3) 5\

Figure 5-4. Formulas for Trial Merger of Clusters

5-8

(

\

This procedure, which is performed on the VAX, creates an
objective function by taking a weighted sum of differences
between the actual covariance, skew, and kurtosis components
of the parent cluster and the components computed using the
trial subcluster weights, means, and covariances. The de-
rivatives of this objective function with respect to the
subcluster-statistics components provide estimates of the
corrections to be applied. The number of iterations of the
procedure is specified by user parameter SPLITER.
Experiments with limited amounts of synthetic imagery sug-
gest that 100 or more iterations of the steepest descent
procedure are needed to improve significantly on the initial
subcluster statistics, and that the ultimate improvement may
be rather small. Because the MPP statistics refinement
phase is quite fast, it is not clear under what circum-
stances, if any, it is worthwhile to use the VAX to refine
the initial estimates.

5-9

9886

APPENDIX - CLASSY PROGR&~ MODIFICATIONS

This appendix covers the following topics:

• Status of CLASSY testing and debugging

• Actions to be taken to correct known problems and
deficiencies

• Suggestions for enhancements

• Code to be inserted into various CLASSY and support
modules to correct problems and/or add enhancements

Questions may be addressed to Dick White, telephone
(919) 781-7292 or (919) 781-4963.

A.l STATUS OF CLASSY TESTING AND DEBUGGING

The entire CLASSY program has been exercised with two dif-
ferent test images, generated by MLVRGN, as follows:

• Single broad multivariate distribution, with three
spectral channels

• Two broad, slightly overlapping distributions, with
five spectral channels

The first test image yielded acceptable results, except that
its kurtosis somewhat exceeded the threshold for trial
splitting. It is not clear whether this is because the dis-
tribution generated by MLVRGN was not "perfectly random"
(due to rounding of image components to integers and/or im-
perfections in the FORTRAN RAN function) or because the de-
fault value of the CONLEVEL parameter is unrealistic.

The second test image underwent several iterations without
proolems although one of the two distributions once again
yielded kurtosis values above the splitting threshold.
Eventually, the program aborted because of an error in the
primitive XCHGRP, called by BLKSUM. The identical error

A-l

9886

(occurred on several consecutive tests but could not be made
to occur for standalone tests of XCHGRP, neither on the ar-
ray unit (AKU) nor on the simulator. This testing was done
at the end of January, just before a major failure of the
Massively Parallel Processor (MPP).

All parts of the CLASSY code have been exercised except the
following:

• CLAJST/trymerge, CLAJST/domerge--Sufficiently simi-
lar clusters did not occur during testing. To
force occurrence of merging, the default value of
parameter MERGETHR should be increased; decreasing
BCOEFF may also help.

• Calls to HXDCMT, EXTBLK, and EXTHDM in modules
MPPSTT, GETPROBS, and DECSTAT--These calls have
been replaced by temporary Parallel Pascal versions
of EXTBLK and EXTHDM pending completion of testing
of the corresponding primitives.

• Subroutines to load color lookup tables into the
Interactive Imaging System (lIS) display in module
CLSTAT and to copy class-map pseudo images from ARU
memory to the lIS in module MPPSTT--The required
subroutines have yet to be written.

Unit testing was also done for all MPP primitives except
HXDCMT, EXTBLK, and EXTHDM. Because of repeated hardware
problems, systematic testing of all combinations of options
and a full range of data types and lengths was not com-
pleted. Other programs using these primitives may encounter
errors; as far as is currently known, the primitives work
correctly for the options and data types required by CLASSY.

HXDCMT has been checked out for reformatting 16 planes.
Because very little additional code is used to handle more

A-2

9886

than 16 planes, further testing of HXDCMT should be simple
and is unlikely to uncover major problems.

EXTBLK has encountered problems in retrieving valid data via
the "Read Corner points" instruction: these problems seem to
be in module RCORN.PCU. Introducing a "no op" instruction
solved part of the problem, suggesting that more than one
ARU cycle is needed for the corner point values to be prop-
agated from the boards containing the corner-point process-
ing elements (PEs). The remaining problem is thought to
occur because, unlike other instructions that use fields 3
and 4, the RCORNER instruction acts on the current contents
of field 3 regardless of the value of the W bit in the com-
mon register. A solution is suggested in Section A.4.l.

Testing of EXTHDM was not begun. This is a rather messy
routine, using a large number of registers and for temporary
pointers, so problems are likely.

A.2 KNOWN PROBLEMS AND DEFICIENCIES

The following actions should be taken to correct known prob-
lems and deficiencies:

• XCHGRP--When exchanging adjacent groups of rows or
columns for 32-bit real data arrays, the low-order 2 bits
were partly incorrect, whereas all higher order bits were
exchanged properly. This suggests that the main loop in
XCHGRP.PCU is working correctly. However, even if register
contents on entry to the main loop are assumed completely
unknown, the contents of the second plane in the results can
be partially predicted and do not agree with the observed
results. CSC documented the problem and provided proce-
dures to GSFC for breaking at that point in CLASSY where the
problem occurs. If it is still present, a check should be
made to determine whether the problem depends on the loca-
tion of the XCHGRP code in PE control memory. Re~nstating

A-3
9886

(a Control and Debug Module (CAD) capability to single step
through PECU code would also be helpful.

• EXTBLK--As stated above, there seems to be a prob-
lem in RCORN.PCU. A code change is suggested in Sec-
tion A.4.l.

• Convergence report--For parameter MAXMITER greater
than 20, CLRPRT does not correctly print out the convergence
behavior for the statistics-refinement phase of CLASSY. A
code change is suggested in Section A.4.2.

• lIS display interface--The same MCU code used by
program MAXLIK to transfer class-map pseudo images from ARU
memory to the lIS display can be used, with minor modifica-
tions to allow for the single l28-by-128 image generated by
CLASSY. The module for loading color lookup tables,
Loadlut, should be very similar to existing subroutines used
by Land Analyses System (LAS) software; a Parallel Pascal
callable front end will need to be added.

• Processing log disk format--Because the default
field length in Parallel Pascal standard output is very
long, the header record for the processing log file, which
records the values of user parameters, is badly formatted.
Explicit field lengths need to be specified in procedure
initlog in module CLINIT.

• Transportable Applications Executive (TAE) Catalog
Manager interface--Although the VAX/VMS operating system
already provides many of the features that the Catalog Mana-
ger added to the PDP-ll RSX environment, all standard LAS
programs are designed to work with the Catalog Manager. MPP
image applications intended to interface with LAS routines
must therefore work with the dual file name facility (TAE
names plus non-mnemonic host names) required by Catalog Man-
ager and LAS Label Services routines. Specific changes in
CLASSY are the specification of file names as "filename"

A-4

9886

(rather than "string" type parameters in CLASSY.PDF and
CLINIT; the use of XRFILE instead of XRSTR in CLINIT to get
the parameters from TAE; passing host names and lengths from
CLINIT to CLLDPX and CLRPRT; and reading LAS-format image
files in CLLDPX. A code change is suggested in Sec-
tion A.4.3 •

• LAS-format images--CLASSY needs to be able to read
images in the standard format produced by the LAS Image
Input/Output (I/O) package. This format records header in-
formation in a Data Descriptor Record (DDR) located in a
different file from the image. The standard TAE XI file I/O
routines, on the other hand, look for header data in the
first record of the image file. Routine LIOPIN.FOR has been
written, but not tested, to determine automatically whether
an input image is in TAE or LAS format; in the latter case,
it receives required header data from the DDR file. This
routine must be used with a corrected version of the TAE
routine XIOPIN (as of February 1, 1985, XIOPIN did not prop-
erly assign event flags for use by XIREAD and XIWAIT).
Writing output images (for CLASSY, only the class-map pseu-
doimage) in LAS format will be more difficult; the current
version of CLASSY will not attempt to do so. Files
LIOPIN.FOR and PPXTRN.MAR contain the required external
modules •

• Final cluster statistics format--The current report
written by procedure wrtstats in module CLRPRT is not com-
patible with that produced by existing LAS statistics-
generating routines. To facilitate future use of these
statistics by MAXLIK and similar programs, this format should
be changed. Larry Novak or Hampapuram Ramapriyan of GSFC
may be able to supply a description of the correct format •

• Image-generator routine--The current version of
MLVRGN does not use buffer space efficiently. A better

A-5

9886

/

(version (which matches the pseudocode in the program docu-
mentation) is provided in file MLVRGN.UPD: this version has
not been checked out.

A.3 SUGGESTIONS FOR ENHANCEMENTS

Based on the very limited experience with test data so far,
the following enhancements appear desirable:

• Reducing effect of low-probability pixels--The
present method of computing the likelihood ratio between a
cluster and its subclusters assumes that a a value of the
relative probability is very much less than any finite
value. An actual ratio of either 0 or infinity is replaced
by a value (1/1024 or 1024, respectively) whose logarithm
has a relatively large absolute value. Because the proba-
bilities are in fact represented as scaled integers between
o and 4095, it is unlikely that a rounded prObability value
of 1 or 2 really represents a much stronger cluster member-
ship than a rounded value of O. It is therefore suggested
that 0.5 be added to the rounded relative probability values
before taking their ratio. This will avoid heavily biasing
the final likelihood values by contributions from pixels
that have low relative probabilities with respect to both
the parent cluster and its subclusters. A suggested alter-
nate version of procedure 1ikerat in module DECSTAT is given
in Section A.4.4 •

• Ad hoc adjustment of splitting thresho1d--The mul-
tivariate normal arrays generated by MLVRGN tended to have
kurtosis values somewhat above the threshold for trial
splitting computed using a 99-percent confidence level for
parameter CONLEVEL. Tnis may be because MLVRGN is not pro-
ducing a truly random distribution. It may, however, be
desiraole (also when using real imagery) to be able to ad-
just the splitting threshold arbitrarily either to encourage
or discourage splitting without explicit reference to the

A-6

9886

(
statistical models reference by CONLEVEL. A new parameter,
SKKMULT, is suggested to follow CONLEVEL immediately in the
list of parameters. Procedure setthr in mOdule CLINIT would
multiply the three skew/kurtosis thresholds (variables
Skwthr, Trkthr, and Urkthr) by SKKMULT; its default value
would be 1.0 •

• Anti-thrashing logic--There seems to be a danger
that a cluster having skew or kurtosis values above the
threshold for trial splitting but yielding a subcluster-to-
cluster likelihood ratio small enough that the split is
rejected will again yield skew or kurtosis values above the
threshold. To avoid an endless cycling between trial split-
ting and split rejection, a record needs to be kept of
clusters for which splitting has already been rejected.
Because adjustments of the statistics and membership of
other clusters may cause some drift in the given cluster,
allowance needs to made for retrying the split if major
changes occur. The following logic is suggested:

In module CLASSY, define

var
Parstats: array[1 ••MAXCLUST,1 ••2*MAXCHAN] of real;
Nosplit: array[1 ••lOO,1 ••2*MAXCHAN] of real;
Rejspltcnt: integer; (* Initialized to 0 *)

and include these variables in the argument list for CLAJST.

CLAJST/dosplit:

IF cluster successfully split
'rHEN

Save means and diagonal covariance values of parent
cluster in Parstats[Node]

END IF

A-7

98tl6

CLAJST/sublim:

IF Creation[Pnode] < Creation[Sub[Pnode]]
THEN

Copy means and diagonal covariances from
Parstats[Oldnode[Pnode]] into next available entry in
Nosplit

Increment Rejspltcnt by 1
END IF
CLAJST/trysplit:

IF cluster meets skew/kurtosis tests for splitting
THEN

Set Divisor = 1.0
DO FOR each record in Nosplit

Compute sum of squares of differences between means in
Nosplit record and means of cluster being examined

IF difference less than Nchan*Mdiffmax (where Mdiffmax
is on the order of .01)

THEN compute sum of squares of logs of ratios of
diagonal covariance elements

IF sum less than Nchan*Cdiffmax (where Cdiffmax is
on the order of .01)

THEN multiply divisor by Divmult (where Divmult is
on the order of 2.0)

END IF
END IF

END DO
Divide skew/kurtosis test ratios (Srat, Trat, and Urat)

by Divisor
IF one or more test ratios> 1.0
THEN set flag for trial split
END IF

END IF
• Increased number of clusters--The easiest way to

increase the number of clusters to 64 would be by swapping
the relative cluster probabilities for half the clusters out
to the stager memory. To fit inverse covariance arrays for
64 clusters into a single set of 32 ARU memory planes, the
maximum number of channels would be reduced to 16. This
would free up 8*(21-16) = 40 planes currently used for raw
image data and thereby provide the needed extra storage for
the 32-fold partial sums in module GETPROBS. Except for
procedure rpadjust in module GETPROBS, the swapping of data

A-8

9886

- J

to and from the stager could be fully overlapped with the
computations that use the relative probabilities.

A.4 CODE MODIFICATIONS

A.4.l RCORN.PCU

: At label P$RCORNM insert after MODPE
+ LOAD,IFO P~FR8MNORTH : Suppress· possible corner-point

load

A.4.2 CLRPRT.PP
{procedure mppconvrg within procedure wrtreport -- replace by:

(*Local procedure to report MPP statistics convergence
behavior *)

procedure mppconvrg(var DevIce: text);
beoin

writeln(Device);
writeln(Device~ 'Convergence behavior for MPP',

, statistics refinement:'}:
writeln(Device);
writeln!Device, 'Iteration Maximum Iterations

'Maximum Weight Change for Iteration'};
writeln(Device, 'of Means Change of Weights ');
writelniDevice, Loop in Means Loop iN)

1 2 N-l N');
writeln(Device);
Jstart := 4;
Kstop := Ccnvrep[ll;
if iKstop > REPLNG div 6) then

Kstop := REPLNG div 6;
for K := 1 to Kstop do

begin
Temp := Convrep[Jstart-2l / 128.0.
if K < Kstop then

write(Device, K : 5, Temp : 13:2~
Convrep[Jstart-l] : 11~

else
writeiDevice, Convrep(lJ : 5~ Temp' 13:2,

ConvrepEJstart-l] 11, ');
+or J := Jstart to Jstart + 3 do

begin
Temp := Convrep[Jl I 4096.0.
write(Device~ Temp 9:4);

end;
writeln(Device);
Jstart := Jstart + 6

end;
end;

* 0+ local procedure mppconvrq *i

A-9

9886

(
A.4.3 CLASSY.PDF

To
PAPM
PAEN
PAEI"1
PA!;M

support Catalog Manager,
INIMAGES TYPE=FiLE
STATFILE TYPE=FILE
OUT IMAGE TYPE=FILE
LOGFILE TYPE=FILE

replace parameter definitIons
COUNT=2:21

COUNT=O:l
DEFAULT=CLASSY.LOG

by

A.4.4 DECSTATS.PP

·DECSTATS.PP
{Replace procedure likerat with following code:}

procedure likerat; <* Cnmpute contribution of each sample
to ratiobetween likelihood that
single best fit to data ana
likelihood that subclusters are
instead best fit *1

<* Arguments:
* Clust
*" Psum
** Ratio

Number <node> of parent cluster.
Array containing, for each sample. the sum of
relative probabilities over all subclusters.
Array to receive likelihood ratio values.

* Global references:
* Read only - Relprob
*>
var

Parprob
Subprob •

MPPINT;
MPPINT;

(*Resealed relative prob. for parent *i
<* Resealed sum of relative

probabilities for subs *>
begin

scale1(Psum, Subprob, 0, 13, 18,0,0>; <* 30-bit fracto *>
scalel(Relprob[ClustJ, Parprob, 0, 12, 1, 0, 0); (* 13-bit *>
Subprob := Subprob + 131072; <* Deemphasize samples with *)
Parprob := Parprob + 1; <* low prob. for all clusts. *i
Subprob := Subprob div Parprob; <* i7-bit fraction *)
Ratio := Subprob;
scalrr(-17, Ratio>;
Ratio := In(Ratio>

end;

9886

(* of procedure likerat *")

A-10

I

1.

2.

REFERENCES

R. K. Lennington and M. E. Rassbach, Mathematical De-
scription and Program Documentation for CLASSY, an Adap-
tive Maximum Likelihood Clustering Method, Lockheed
Electronics Company, Inc., April 1979.

R. K. Lennington and M. E. Rassbach, CLASSY--An Adaptive
Maximum Likelihood Clustering Algorithm, Proceedings of
tne Ninth Annual Meeting of the Classification Society,
May 1978.

R-l
9886

	page1
	titles
	~w .W,-.,J 3/2.7/~5"
	~- -- 3;97ftS-
	~-

	images
	image1
	image2
	image3

	page2
	titles
	(
	ii

	page3
	titles

	..

	. .
	...
	(
	Memory •••..••.••••••• 3-2

	page4
	page5
	titles
	Clusters•......

	page6
	page7
	titles
	1-1

	page8
	page9
	titles
	(
	tI
	,
	Figure 1-1.
	Principal Function and Data Flows for CLASSY
	1-3

	images
	image1
	image2
	image3

	page10
	page11
	page12
	page13
	titles
	(

	page14
	page15
	page16
	page17
	page18
	page19
	page20
	page21
	page22
	page23
	page24
	page25
	page26
	titles
	(

	page27
	page28
	page29
	page30
	tables
	table1

	page31
	titles
	zpz

	page32
	titles
	(
	•
	•

	page33
	page34
	titles
	(

	tables
	table1

	page35
	page36
	titles
	(

	page37
	page38
	page39
	titles
	(

	page40
	titles
	988b

	page41
	titles
	(

	page42
	titles
	(

	page43
	titles
	(

	images
	image1
	image2
	image3
	image4

	page44
	titles
	,

	images
	image1
	image2

	page45
	page46
	titles
	(
	988b

	page47
	images
	image1
	image2

	tables
	table1

	page48
	titles
	(

	page49
	images
	image1
	image2
	image3

	tables
	table1

	page50
	titles
	(
	\

	page51
	page52
	titles
	(

	page53
	page54
	titles
	(

	page55
	titles
	(
	/

	page56
	titles
	(

	page57
	titles
	(

	page58
	page59
	titles
	to and from the stager could be fully overlapped with the
	A.4 CODE MODIFICATIONS
	A.4.l RCORN.PCU
	A.4.2 CLRPRT.PP
	9886

	page60
	titles
	(
	A.4.3 CLASSY.PDF
	To
	A.4.4 DECSTATS.PP
	*
	A-10

	page61

